3.357 \(\int \frac{\sqrt{d+e x^2}}{x^4 \left (a+b x^2+c x^4\right )} \, dx\)

Optimal. Leaf size=373 \[ \frac{c \left (\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{c \left (-\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{d+e x^2} (b d-a e)}{a^2 d x}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}-\frac{\sqrt{d+e x^2}}{3 a x^3} \]

[Out]

-Sqrt[d + e*x^2]/(3*a*x^3) + (2*e*Sqrt[d + e*x^2])/(3*a*d*x) + ((b*d - a*e)*Sqrt
[d + e*x^2])/(a^2*d*x) + (c*(b*d - a*e + (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*
a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*
a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt
[b^2 - 4*a*c])*e]) + (c*(b*d - a*e - (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]
]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2
 - 4*a*c])*e])

_______________________________________________________________________________________

Rubi [A]  time = 5.63495, antiderivative size = 373, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241 \[ \frac{c \left (\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{c \left (-\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{d+e x^2} (b d-a e)}{a^2 d x}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}-\frac{\sqrt{d+e x^2}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[d + e*x^2]/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-Sqrt[d + e*x^2]/(3*a*x^3) + (2*e*Sqrt[d + e*x^2])/(3*a*d*x) + ((b*d - a*e)*Sqrt
[d + e*x^2])/(a^2*d*x) + (c*(b*d - a*e + (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*
a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*
a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt
[b^2 - 4*a*c])*e]) + (c*(b*d - a*e - (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]
]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2
 - 4*a*c])*e])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x**2+d)**(1/2)/x**4/(c*x**4+b*x**2+a),x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [A]  time = 0.781711, size = 0, normalized size = 0. \[ \int \frac{\sqrt{d+e x^2}}{x^4 \left (a+b x^2+c x^4\right )} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[Sqrt[d + e*x^2]/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

Integrate[Sqrt[d + e*x^2]/(x^4*(a + b*x^2 + c*x^4)), x]

_______________________________________________________________________________________

Maple [C]  time = 0.042, size = 322, normalized size = 0.9 \[ -{\frac{1}{3\,ad{x}^{3}} \left ( e{x}^{2}+d \right ) ^{{\frac{3}{2}}}}+{\frac{1}{2\,{a}^{2}}\sqrt{e}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{4}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{3}+ \left ( 16\,a{e}^{2}-8\,bde+6\,c{d}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){\it \_Z}+c{d}^{4} \right ) }{\frac{c \left ( ae-bd \right ){{\it \_R}}^{2}+2\, \left ( 2\,ab{e}^{2}+acde-2\,{b}^{2}de+bc{d}^{2} \right ){\it \_R}+ac{d}^{2}e-bc{d}^{3}}{{{\it \_R}}^{3}c+3\,{{\it \_R}}^{2}be-3\,{{\it \_R}}^{2}cd+8\,{\it \_R}\,a{e}^{2}-4\,{\it \_R}\,bde+3\,{\it \_R}\,c{d}^{2}+b{d}^{2}e-c{d}^{3}}\ln \left ( \left ( \sqrt{e{x}^{2}+d}-x\sqrt{e} \right ) ^{2}-{\it \_R} \right ) }}-{\frac{b}{{a}^{2}}\sqrt{e}\ln \left ( \sqrt{e{x}^{2}+d}-x\sqrt{e} \right ) }+{\frac{b}{{a}^{2}dx} \left ( e{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-{\frac{bex}{{a}^{2}d}\sqrt{e{x}^{2}+d}}-{\frac{b}{{a}^{2}}\sqrt{e}\ln \left ( x\sqrt{e}+\sqrt{e{x}^{2}+d} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x^2+d)^(1/2)/x^4/(c*x^4+b*x^2+a),x)

[Out]

-1/3/a/d/x^3*(e*x^2+d)^(3/2)+1/2/a^2*e^(1/2)*sum((c*(a*e-b*d)*_R^2+2*(2*a*b*e^2+
a*c*d*e-2*b^2*d*e+b*c*d^2)*_R+a*c*d^2*e-b*c*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8
*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^3)*ln(((e*x^2+d)^(1/2)-x*e^(1/2))^2-
_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4*b*d^2
*e-4*c*d^3)*_Z+c*d^4))-1/a^2*e^(1/2)*b*ln((e*x^2+d)^(1/2)-x*e^(1/2))+b/a^2/d/x*(
e*x^2+d)^(3/2)-b/a^2/d*e*x*(e*x^2+d)^(1/2)-b/a^2*e^(1/2)*ln(x*e^(1/2)+(e*x^2+d)^
(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{e x^{2} + d}}{{\left (c x^{4} + b x^{2} + a\right )} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^4), x)

_______________________________________________________________________________________

Fricas [A]  time = 9.84009, size = 5528, normalized size = 14.82 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="fricas")

[Out]

1/12*(3*sqrt(1/2)*a^2*d*x^3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 -
4*a^2*b^2*c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2
*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2
 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4
*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8
- 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b
^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2
)*e^2)/(a^10*b^2 - 4*a^11*c)) + 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 - 2*
(a^2*b^3*c^2 - 2*a^3*b*c^3)*d*e - ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*
a*b^4*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)
*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt((
(b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*
a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^
2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) + ((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*
a^4*b*c^3)*d - (a^2*b^6 - 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b
^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c
)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*
b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c +
4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) - 3*sqrt(
1/2)*a^2*d*x^3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c +
 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*
a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^
3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a
^5*b^2 - 4*a^6*c))*log(((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c +
 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*
b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*
b^2 - 4*a^11*c)) + 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 - 2*(a^2*b^3*c^2
- 2*a^3*b*c^3)*d*e - ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 1
4*a^2*b^2*c^3 + 4*a^3*c^4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 - 2*sqrt
(1/2)*sqrt(e*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt(((b^8 - 6*a*b^
6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7
*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(
a^10*b^2 - 4*a^11*c)) + ((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d
- (a^2*b^6 - 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*
b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8
- 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b
^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2
)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) + 3*sqrt(1/2)*a^2*d*x^
3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e
 + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
 a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2
*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^
6*c))*log(-((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*
c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*
a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11
*c)) - 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 + 2*(a^2*b^3*c^2 - 2*a^3*b*c^
3)*d*e + ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 14*a^2*b^2*c^
3 + 4*a^3*c^4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 + 2*sqrt(1/2)*sqrt(e
*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt(((b^8 - 6*a*b^6*c + 11*a^2
*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2
 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4
*a^11*c)) - ((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d - (a^2*b^6 -
 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (
a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c
+ 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3
*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10
*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) - 3*sqrt(1/2)*a^2*d*x^3*sqrt(-((b^
5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2
- 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^
2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3
*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(-(
(a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*
b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d
*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) - 2*(a*
b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 + 2*(a^2*b^3*c^2 - 2*a^3*b*c^3)*d*e + ((b
^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^
4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((
a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6
*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c
^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) -
((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d - (a^2*b^6 - 6*a^3*b^4*c
 + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^
2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4
*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2
*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^1
1*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) + 4*((3*b*d - a*e)*x^2 - a*d)*sqrt(e*x^2 + d))
/(a^2*d*x^3)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{d + e x^{2}}}{x^{4} \left (a + b x^{2} + c x^{4}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x**2+d)**(1/2)/x**4/(c*x**4+b*x**2+a),x)

[Out]

Integral(sqrt(d + e*x**2)/(x**4*(a + b*x**2 + c*x**4)), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="giac")

[Out]

Timed out